

MEMO Customization Guide

Introduction

Tablet allows to customize:

• Graphical Interface
• LoRaWAN Interface: Uplinks and Downlinks format

Customization is done via editing configuration files in YAML format.
(for detailed YAML format description here: https://yaml.org/spec/1.2.2/)

Configuration Files

elements.yml - defines graphical elements which are displayed on the screen
texts.yml - defines all static texts which are used in graphical interface
styles.yml - defines style attributes of graphical element, e.g shadows, text alignment, etc
uplinks.yml - defines format of all UL messages and events which trigger uplink
dlinks.yml - defines format of all DL messages and events which are triggered when DL is
received

How to apply new configuration?

1. Change configuration files according to your preferences
2. Upload configuration files to the tablet via USB
3. Reboot tablet using Reset button

https://yaml.org/spec/1.2.2/

Graphical Interface customization

Tablet allows to compose any interface from graphical elements.

Next graphical elements are available:

• Label - displays any text. E.g. “Room humidity is 65%“
• Panel - rectangular filled with color
• Image - display picture
• Button - touch button

How to create Graphical Interface?

1. Create elements.yml
2. Specify all graphical elements in the file
3. Specify attributes and position of the each element
4. Upload this file to the Tablet
5. Reboot Tablet

Example of elements.yml file
It includes configurations for 4 different graphical elements (label, image, panel, button)

Elements:

Product Name label

-

 id: lab_productName

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 0

 y: 135

 width: 1024

 visible: 1

 text_id: cust1_txt

Company logo black image

-

 id: img_logoBlack

 type: image

 x: 681

 y: 50

 image: LOGO_B.bin

 visible: 1

Bottom panel

-

 id: pnl_bottom

 type: panel

 style_id: btnPanel_stl

 x: 0

 y: 586

 width: 1024

 height: 179

 visible: 1

Some button

-

 id: btn_custScr1_1

 type: button

 style_id: bookNowBtn_stl

 label_style: whiteLab_stl

 font: chivo40.bin

 x: 5

 y: 588

 width: 1014

 height: 164

 text_id: cust2_txt

 visible: 1

Allowed Symbols in elements.yml :

IMPORTANT: Make sure you do not use not use symbols “#”, “!” and “@” which are special
symbols in YAML (for example “#” is a symbol of comment line in YAML). If it is really needed
you may use
“!” and “@” symbols (but not “#” symbol) for string values inside double quotes.
For example:

wrong usage:
label_style: cool_style_@1

right usage:

label_style: "cool_style_@1"

File Structure of elements.yml :

Elements:

-

 <screen element 1 configurations>

-

 <screen element 2 configurations>

...

-

 <screen element N configurations>

• <screen element 1 configurations>, <screen element 2 configurations> and <screen
element N configurations> – sets of configurations for screen elements 1, 2 and N
respectively.

• document starts with “---”.
• “Elements:” is on the next line.
• The configurations of the screen elements are placed after “Elements:” line.
• The configurations of every screen element start with “-” on separated line.

Concept of Screens:

Screen is a container for graphical elements.
It represents all the area of physical tablet screen, which can be used to display elements.

Initial Screen

Tablet always starts from the initial screen.
Initial screen is displayed until tablet receives LoRa downlink with command to switch to
another screen. (pls see Custom Screens section). Initial Screen displays tablet related data:
firmware versions, logo, etc.

Graphical elements which are displayed on Initial Screen has next reserved ids:

lab_productName - product name
lab_fwVer - tablet firmware version
lab_tsFwVersion - touch screen controller virmware version
lab_bootloadVer - bootloader version
lab_apploadVer - application loader version
lab_iteFwVer - display controller firmware version
lab_loraStatus - statuses of connection to LoRa network (possible values: WAITING TO JOIN
(before joining to the network) and JOINED SUCCESSFULLY (after it))
img_logoBlack - Tektelic logo
pnl_bottom - panel with LoRa statuses

This elements can be altered or removed from Initial Screen if needed.

Custom Screens

Aside of Initial Screen it is possible to create up to 4 custom screens.
Switch to particular Custom Screen is done via LoRa downlink.
Each custom screen can contain:

• up to 10 labels
• up to 6 buttons
• up to 5 panels
• up to 5 images

NOTE:
elements.yml contains all graphical elements for all Customs Screens and Initial Screen.

Description of Graphical Element Fields

Mandatory Fields for ALL graphical elements

• id - is used to identify each graphical element.

id format MUST follow naming convention:
<type>_custScr<number of the screen>_<number of the element with this type on the
screen>

o type - first 3 symbols which contain graphical element type:
▪ “lab” for labels
▪ “img” for images
▪ “pnl“ for panels
▪ “btn“ for buttons

o number of the screen - number from 1 to 4
It is possible to have up to 4 Custom Screens (pls see Concept Of Screens section)

o number of the element with this type on the screen - uniquely identifies each
element on the Screen. Next values are allowed:

▪ from 1 to 10 for labels
▪ 1 – 6 for buttons
▪ 1 – 5 for panels
▪ 1 – 5 for image

o id examples:
▪ “lab_custScr1_1” - label placed on 1st Custom Screen with identifier 1

▪ “lab_custScr1_2” - label placed on 1st Custom Screen with identifier 2
▪ “img_custScr3_4“ - image placed on 3rd Custom Screen with identifier 4

• type - specify graphical element type.
Use:

o “label” for labels
o “image” for images
o “panel“ for panels
o “button“ for buttons

• x - horizontal coordinate of the left bottom corner of the graphical element (coordinates
start from the left top edge of the screen). The value of this field is limited by the
resolution of the screen (value should be in 0 – 1024 range).

• y - vertical coordinate of the left bottom corner of the graphical element (coordinates
start from the left top edge of the screen). The value of this field is limited by the
resolution of the screen (value should be in 0 – 768 range).

• visible – screen element visibility state. Possible values for this field are:

o 0 – screen element is invisible.

o 1 – screen element is visible.

Fields for the Label

• font - name of the custom font to be used.
The length of the name of the file has to be not more than 8 symbols and the length of
the file extension has to be not more than 3 symbols. Pls refer to ”How to create custom
fonts? ” section for details. NOTE: Default font is font with height size equal to 20. It is
support Basic Latin, Latin-1
Supplement, Cyrillic, Arabic, Arabic Presentation Forms-A and Arabic Presentation
Forms-B symbols.

• width – the width of the label in pixels. This field is optional. If this field is not set then
width of the label will set automatically equal to the width of content (text).

• text_id – identifier of the static text string which is displayed on the graphical element.
All static text strings are specified in text.yml file. text_id should correspond to the
particular id in that file.

• style_id - defines style which is applied to the graphical element.
Style can specify colors, shadows, lines weight, etc.
All styles are configured in styles.yml file and style_id should correspond to the
particular id in that file

• calc_id – used to display system information.
If calc_id and text_id both are specified for the same label - calc_id field is ignored.

Possible values for calc_id field are following (other values will be ignored):

o regStr_calc – firmware version with regional belongings string.
o bootloadVer_calc – bootloader version
o apploadVer_calc – application loader version
o iteVer_calc – ITE firmware version
o loraStatus_calc – the state of the connection to LoRa network
o tsFwVer_calc – touch screen firmware version

Fields for the Panel

• style_id - defines style which is applied to the graphical element.
Style can specify colors, shadows, lines weight, etc.
All styles are configured in styles.yml file and style_id should correspond to the
particular id in that file.

• width – the width of the panel in pixels
• height – the height of the panel in pixels

Fields for the Image

• image – name of the image file that is the source of image. The length of the name of
the file has to be not more than 8 symbols and the length of the file extension has to be
not more than 3 symbols. This file has to be in binary format. (pls see How to prepare
Images? section)

• NOTE: image dimensions are based on actual image size in pixels. Tablet cannot rescale
images.

Fields for the Button

• style_id - defines style which is applied to the button
Style can specify colors, shadows, lines weight, etc.
All styles are configured in styles.yml file and style_id should correspond to the
particular id in that file

• label_style – defines style which is applied to label which is placed on the button
All styles are configured in styles.yml file and label_style should correspond to the
particular id in that file

• font – the name of the font file that is the source of font for label viewed inside of the
button.
The length of the name of the file has to be not more than 8 symbols and the length of
the file extension has to be not more than 3 symbols. Pls refer to ”How to create custom
fonts? ” section for details. NOTE: Default font is font with height size equal to 20. It is
support Basic Latin, Latin-1
Supplement, Cyrillic, Arabic, Arabic Presentation Forms-A and Arabic Presentation
Forms-B symbols.

• text_id – identifier of the static text string which is displayed on the button label .
All static text strings are specified in text.yml file. text_id should correspond to the
particular id in that file.

• width – the width of the button in pixels.
• height – the height of the button in pixels.

How to add static texts?

1. Create texts.yml
2. Specify all static texts in the file (use only predefined ids for texts)
3. Link static text with graphic element you want to use this text using id
4. Upload texts.yml and elements.yml files to the Tablet
5. Reboot Tablet

texts.yml configuration file example:

Texts:

Some custom text

-

 id: cust1_txt

 value: "my text"

Another custom text

-

 id: cust2_txt

 value: "my another text"

NOTE: Up to 30 texts can be created.

Each text object contains 2 parameters:

• id - unique string which identifies particular text object.
o id format is following cust<number>_txt

o number should be from 1 to 30
o examples: cust1_txt, cust21_txt
o id will be linked with text_id field in elements.yml file:

text_id of the particular element in elements.yml will be the same as id in
texts.yml
So particular element will display that text string.

• value - text itself. NOTE: brackets ““ must be used

Additional Customization of Graphical Interface

Custom styles and fonts can be applied if needed.
E.g shadows, font attributes, etc.

How to create custom styles?

1. Create styles.yml
2. Specify all styles
3. Apply styles to the graphical elements which are specified in elements.yml
4. Upload to the Tablet styles.yml and elements.yml files
5. Reboot Tablet

styles.yml file example

Styles:

Dark grey label style

-

 id: dGreySpaceLab_stl

 text_color: dark_grey

 text_align: center

 letter_space: 1

Generic button style

-

 id: genericBtn_stl

 bg_color: white

 radius: 5

 pad_hor: 0

 pad_ver: 0

 pad_gap: 0

 border_color: dark_grey

 border_width: 10

 border_opa: opa_cover

 border_side: full

 shadow_color: dark_grey

 shadow_width: 5

This example file includes configurations for 2 styles (with names dGreySpaceLab_stl and
genericBtn_stl that are set in id).

Mandatory Field for styles

• id – unique identifier of the style. It should be literal name that may consist of Latin
letters, “_” and digits (first symbol has to be a letter) and its length should not exceed 20
symbols. It is desirable to add “_stl” at the end of the id of the style (do not forget to
include these 4 symbols in id length limit).

o left
o center
o right

• letter_space – the space in pixels between the nearest letters in the same word. The
range of this field is 0 – 10 (0 means that this option is disabled). Default value is 0
pixels.

• bg_color – a color of the background of the screen element. Possible values of bg_color
field are the same as for text_color. Default value is white.

• border_color – a color of the borders of the screen element. Possible values of
border_color field are the same as for text_color. Default value is black.

• border_opa – the opacity of the borders of the screen element. Default value is
opa_cover. Possible values of border_opa field are (other value will be ignored by
Tablet):

o opa_transp – transparent border
o opa_20 – 20% opacity
o opa_40 – 40% opacity
o opa_60 – 60% opacity
o opa_80 – 80% opacity
o opa_100 – 100% opacity
o opa_cover – full opacity (the same as opa_100)

• border_side – the side of the screen element where border should be placed. Default
value is none. Possible values of border_side field are (other value will be ignored by
Tablet):

o none
o bottom
o top
o left
o right
o full

• border_width – the width of the border in pixels. The range of this field is 0 – 50 (0
means that this option is disabled). Default value is 0.

• shadow_color – a color of the shadows of the screen element. Possible values of
shadow_color field are the same as for text_color. Default value is white.

• shadow_width – the width of the shadow in pixels. The range of this field is 0 – 50 (0
means that this option is disabled). Default value is 0.

• pad_hor – horizontal padding in pixels. The range of this field is 0 – 20 (0 means that
this option is disabled). Default value is 0.

• pad_ver – vertical padding in pixels. The range of this field is 0 – 20 (0 means that this
option is disabled). Default value is 0.

• pad_gap – gap padding in pixels. The range of this field is 0 – 20 (0 means that this
option is disabled). Default value is 0.

• radius – the radius of every corner in pixels. The range of this field is 0 – 20 (0 means
that this option is disabled). Default value is 0.

NOTE: The number of configured styles in styles.yml file should not exceed 50.

How to create custom fonts?

1. Convert font from TTF/WOFF to bin with Font Converter
2. Link new font bin-file with elements you want to use this font in elements.yml
3. Upload new font bin-file and new elements.yml file to the Tablet
4. Reboot Tablet

Example

Fonts may be set up in elements.yml file:

Product Name label

-

 id: lab_productName

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 0

 y: 135

 width: 1024

 visible: 1

 text_id: meetingRoomDisplayTablet_txt

This example configuration for Product Name label (with lab_productName as the value of id
field) shows that this label will use chivo40.bin font file (because the value of font field is equal
to chivo40.bin). If chivo40.bin was not uploaded to the Tablet or the size of this file is more then
permitted (total size of uploaded to the Tablet images, fonts and touchscreen firmware files
should not exceed 220 kB) than the Tablet will use default font instead of chivo40.bin.

How to prepare Images?

1. Convert image from PNG/JPG/BMP to bin with Image Converter
2. Link new image bin-file with elements you want to use this image in elements.yml
3. Upload new image bin-file and new elements.yml file to the Tablet
4. Reboot Tablet

Example

Images may be set up in elements.yml file:

#TEK logo black image

-

 id: img_logoBlack

 type: image

 x: 650

 y: 20

 image: LOGO_B.bin

 visible: 1

This example configuration for TEK logo black image (with img_logoBlack as the value of id
field) shows that this image will use LOGO_B.bin file (because the value of image field is equal
to LOGO_B.bin) as source of picture. If LOGO_B.bin was not uploaded to the Tablet or the size
of this file is more then permitted (total size of uploaded to the Tablet images, fonts and
touchscreen firmware files should not exceed 220 kB) than the Tablet will not show this picture.

Image Converter

Online image converter is a free tool that is accessible through the link:
https://lvgl.io/tools/imageconverter

It is possible to create binary files from images (.png, .jpg and .bmp).

https://lvgl.io/tools/imageconverter

To convert a picture to binary format it is necessary to:

1. Choose an Image (png, jpg, or bmp) (see Figure 1).
2. Give a Name to the output file. E.g. "LOGO"
3. Specify the Color format. It is recommended to use “True color chroma keyed” format.

Some format may convert your picture wrong.
4. Set the output format to Binary RGB332, Binary RGB565 or Binary RGB888. Do not use

“C array”. It is recommended to use “RGB332” format to decrease image file size.
5. Click the Convert button and to download the converted image.

Short explanations about image converter and about color formats can be find on the same
page.

Font Converter
Offline font converter is a free tool that is require node.js 10+ (node.js may be downloaded
from https://nodejs.org/en/download/).

To install globally Font Converter (“lv_font_conv”) use your command prompt and these
commands:

install release from npm registry
npm i lv_font_conv -g
install from github's repo, master branch
npm i lvgl/lv_font_conv -g

It is possible to use lv_font_conv command in command prompt after that.

The command with -h key shows help message and the meanings of the keys that is possible to
use with lv_font_conv:

> lv_font_conv -h
usage: lv_font_conv.js [-h] [-v] --size PIXELS [-o <path>] --bpp

{1,2,3,4,8} [--lcd | --lcd-v] [--use-color-info]
 --format {dump,bin,lvgl} --font <path> [-r

RANGE] [--symbols SYMBOLS] [--autohint-off]
 [--autohint-strong] [--force-fast-kern-

format] [--no-compress] [--no-prefilter] [--no-kerning]
 [--lv-include <path>] [--full-info]

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit
 --size PIXELS Output font size, pixels.
 -o <path>, --output <path> Output path.
 --bpp {1,2,3,4,8} Bits per pixel, for antialiasing.
 --lcd Enable subpixel rendering (horizontal

https://nodejs.org/en/download/

pixel layout).
 --lcd-v Enable subpixel rendering (vertical pixel

layout).
 --use-color-info Try to use glyph color info from font to

create grayscale icons. Since gray tones are emulated via

transparency, result will be good on contrast background only.
 --format {dump,bin,lvgl} Output format.
 --font <path> Source font path. Can be used multiple

times to merge glyphs from different fonts.
 -r RANGE, --range RANGE
 Range of glyphs to copy. Can be used

multiple times, belongs to previously declared "--font".
 Examples:
 -r 0x1F450
 -r 0x20-0x7F
 -r 32-127
 -r 32-127,0x1F450
 -r '0x1F450=>0xF005'
 -r '0x1F450-0x1F470=>0xF005'
 --symbols SYMBOLS List of characters to copy, belongs to

previously declared "--font". Examples:
 --symbols ,.0123456789
 --symbols abcdefghigklmnopqrstuvwxyz
 --autohint-off Disable autohinting for previously

declared "--font"
 --autohint-strong Use more strong autohinting for

previously declared "--font" (will break kerning)
 --force-fast-kern-format
 Always use kern classes instead of pairs

(might be larger but faster).
 --no-compress Disable built-in RLE compression.
 --no-prefilter Disable bitmap lines filter (XOR), used

to improve compression ratio.
 --no-kerning Drop kerning info to reduce size (not

recommended).
 --lv-include <path> Set alternate "lvgl.h" path (for --format

lvgl).
 --full-info Don't shorten "font_info.json" (include

pixels data).

For example, if it is necessary to create binary bold_font_30.bin font file with Latin symbols
from Chivo-Bold.ttf file and with Arabic symbols from DejaVuSans-Bold.ttf file with font height
equal to 30 pixels than you may use this command:

> lv_font_conv --no-compress --no-prefilter --bpp 1 --size 30 --

font Chivo-Bold.ttf -r 0x20-0x7F --font DejaVuSans-Bold.ttf -r

0x600-0x6FF -r 0xFB50-0xFDFF -r 0xFE70-0xFEFF --format bin -o

bold_font_30.bin --force-fast-kern-format

More examples and details about Offline Font Converter see at:
https://github.com/lvgl/lv_font_conv .

https://github.com/lvgl/lv_font_conv

LoRaWAN Interface customization

How to switch Screen with Downlink?

1. Add to dlinks.yml file new downlink with defined screen_id field
2. Add to uplinks.yml file new uplink (if it is not exist) which will be send on periodic basis

to flush downlink queue delivery from Network Server
3. Upload these files to the Tablet
4. Reboot Tablet
5. Send downlink that was added in step 1

Downlinks may be set up in dlinks.yml file:

#Switch to Custom Screen 1 (0x50)

-

 header_id: 0x50

 port: 110

 screen_id: custom1_scr

And uplinks may be set up in uplinks.yml file:

Periodic Uplink to Manage Downlink Queue (0x33)

-

 header_id: 51

 port: 10

 size: 1

 source: timer

 period: 2

It is necessary to send downlink 0x50 to port 110 to switch screen to Custom Screen 1 in this
example. 0x33 periodical uplink will be used here to flush downlink queue from Network
Server.

How to send and display new data to tablet?

1. Add to dlinks.yml file new downlink with updateElement_hdl handler
2. Add to uplinks.yml file with the uplink which will be send on periodic basis to trigger

downlink delivery from Network Server
3. Upload these file to the Tablet
4. Reboot Tablet
5. Send downlink with new text

Note: New text in downlink should be in Unicode. Make sure that the label with new text was
linked with font that includes all symbols to show this text.

Downlinks may be set up in dlinks.yml file:

Update element (0x45)

-

 header_id: 0x45

 port: 102

 handler_id: updateElement_hdl

And uplinks may be set up in uplinks.yml file:

Periodic Uplink to Manage Downlink Queue (0x33)

-

 header_id: 51

 port: 10

 size: 1

 source: timer

 period: 2

This example configuration for Update element downlink (with 0x45 as the value of header_id
field) shows that this downlink payload will be interpreted by the Tablet as command to update
screen element (change text in label (for example the value of CO2 level) or visibility of screen
element).

This downlink will be handled as command to update element only if it is sent to port 102
(because 102 is the value of port field) and with ACK bit equal to 1. ACK bit is the highest in
header. In this example downlink should be with header 0xC5 (because 0x45 in hex is
0b01000101 in binary and it will be changed to 0xC5 which is 0b11000101 with 1 in highest bit)
to be interpreted by the Tablet as command to update screen element.

Example:

You have 3 labels on Custom Screen 1:

1. Label with static text “Temperature”.
2. Label with temperature value.
3. Label with static text “°C“.

These labels defined in elements.yml file:

Temp label

-

 id: lab_custScr1_2

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 50

 y: 340

 visible: 1

 text_id: cust2_txt

Temp value label

-

 id: lab_custScr1_3

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 345

 y: 340

 visible: 1

 text_id: cust3_txt

Degree label

-

 id: lab_custScr1_4

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 400

 y: 340

 visible: 1

 text_id: cust4_txt

Static texts for them are defined in texts.yml file:

Temperature

-

 id: cust2_txt

 value: Temperature

Temperature value

-

 id: cust3_txt

 value: "24"

Celsius degree

-

 id: cust4_txt

 value: "°C"

And you want to update temperature value to 47. To do that it is necessary to send such
downlink on port 102 to Memo (it is necessary to add aforementioned downlink to dlinks.yml
and uplink to uplinks.yml):

0xC5 01 3B 02 34 37

The following the DL frame formats for update screen element message (0x45 downlink in our
case).

Message ID bit 7 (A/N) of the message ID determines whether message is ack or nacked.
Nacked message is ignored.

B0 is determine screen element update type. Possible values for B0 are: 1 – label text update, 2 -
screen element visibility update (message with any other value in B0 is ignoring by tablet).

B1 is determine screen element ID number (identifier of the element of the screen that
necessary to update). Possible values for B1 are corresponding with id field in elements.yml
screen element configuration file: 0 is for lab_productName, 1 – lab_fwVer, 2 –
lab_bootloadVer, 3 – lab_apploadVer, 4 – lab_iteFwVer, 5 – lab_tsFwVersion, 6 –
lab_loraStatus, 7 – img_logoBlack, 8 – pnl_bottom, 57 – lab_custScr1_1, 58 – lab_custScr1_2,
59 – lab_custScr1_3, 60 – lab_custScr1_4, 61 – lab_custScr1_5, 62 – lab_custScr1_6, 63 –
lab_custScr1_7, 64 – lab_custScr1_8, 65 – lab_custScr1_9, 66 – lab_custScr1_10, 67 –
but_custScr1_1, 68 – but_custScr1_2, 69 – but_custScr1_3, 70 – but_custScr1_4, 71 –
but_custScr1_5, 72 – but_custScr1_6, 73 – pnl_custScr1_1, 74 – pnl_custScr1_2, 75 –
pnl_custScr1_3, 76 – pnl_custScr1_4, 77 – pnl_custScr1_5, 78 – img_custScr1_1, 79 –
img_custScr1_2, 80 – img_custScr1_3, 81 – img_custScr1_4, 82 – img_custScr1_5, 83 –
lab_custScr2_1, 84 – lab_custScr2_2, 85 – lab_custScr2_3, 86 – lab_custScr2_4, 87 –
lab_custScr2_5, 88 – lab_custScr2_6, 89 – lab_custScr2_7, 90 – lab_custScr2_8, 91 –
lab_custScr2_9, 92 – lab_custScr2_10, 93 – but_custScr2_1, 94 – but_custScr2_2, 95 –
but_custScr2_3, 96 – but_custScr2_4, 97 – but_custScr2_5, 98 – but_custScr2_6, 99 –
pnl_custScr2_1, 100 – pnl_custScr2_2, 101 – pnl_custScr2_3, 102 – pnl_custScr2_4, 103 –
pnl_custScr2_5, 104 – img_custScr2_1, 105 – img_custScr2_2, 106 – img_custScr2_3, 107 –
img_custScr2_4, 108 – img_custScr2_5, 109 – lab_custScr3_1, 110 – lab_custScr3_2, 111 –
lab_custScr3_3, 112 – lab_custScr3_4, 113 – lab_custScr3_5, 114 – lab_custScr3_6, 115 –
lab_custScr3_7, 116 – lab_custScr3_8, 117 – lab_custScr3_9, 118 – lab_custScr3_10, 119 –
but_custScr3_1, 120 – but_custScr3_2, 121 – but_custScr3_3, 122 – but_custScr3_4, 123 –
but_custScr3_5, 124 – but_custScr3_6, 125 – pnl_custScr3_1, 126 – pnl_custScr3_2, 127 –
pnl_custScr3_3, 128 – pnl_custScr3_4, 129 – pnl_custScr3_5, 130 – img_custScr3_1, 131 –
img_custScr3_2, 132 – img_custScr3_3, 133 – img_custScr3_4, 134 – img_custScr3_5, 135 –
lab_custScr4_1, 136 – lab_custScr4_2, 137 – lab_custScr4_3, 138 – lab_custScr4_4, 139 –
lab_custScr4_5, 140 – lab_custScr4_6, 141 – lab_custScr4_7, 142 – lab_custScr4_8, 143 –

lab_custScr4_9, 144 – lab_custScr4_10, 145 – but_custScr4_1, 146 – but_custScr4_2, 147 –
but_custScr4_3, 148 – but_custScr4_4, 149 – but_custScr4_5, 150 – but_custScr4_6, 151 –
pnl_custScr4_1, 152 – pnl_custScr4_2, 153 – pnl_custScr4_3, 154 – pnl_custScr4_4, 155 –
pnl_custScr4_5, 156 – img_custScr4_1, 157 – img_custScr4_2, 158 – img_custScr4_3, 159 –
img_custScr4_4, 160 – img_custScr4_5 (update screen element message with any other value
for B1 is ignoring by tablet).

Bytes starting from B2 are specific for different update types.

In update label text message (B0 is set to 1) Byte 2 (B2) is size of the new text string N bytes for
the label (Figure 2). The size (B2) is permitted to have values:

• 0x00 – label change its value with space symbol.
• 0x01 – 0x63 – size of the text string for label (maximum size is 99 bytes; if value is more

then 99 (0x63 in Heximal) and not 0xFF tablet ignore string after 99th byte).
• 0xFF – label text reset to default value that set in elements.yml configuration file.

Subsequent bytes in update label text message are new text string of N bytes for label (Fig. 2).

In update screen element visibility message (B0 is set to 2) Byte 2 (B2) is new visibility state (any
other values are ignored by tablet):

• 0x00 – screen element switches to invisible state.
• 0x01 – screen element switches to visible state.

The following table describes the update screen element downlink acknowledgment.

Table: DL Frame Update screen element acknowledgement.

Information Type
Example Message ID
Field Value

Maximum
DL

Frame size

(Bytes)

Information

Update screen element message
(example header_id is 0x45)

0xC5 103 ACK

0x45 1 NACK

Example update screen element messages:

• 0x C5 01 3B 09 54 65 73 74 20 74 65 78 74 – message ID with ACK bit (this message is
mandatory for tablet); update type B0 is 0x01 (update label text); element ID B1 is 0x3B
(0x3B that is 59 in Decimal is lab_custScr1_3 label); string size B2 is 0x09 (0x09 is 9 in

Decimal that means that new text string is consist of 9 symbols); string B3 – B11 are ASCII
codes for string “Test text”.

• 0x C5 02 3B 00 – message ID with ACK bit (this message is mandatory for tablet); update
type B0 is 0x02 (update screen element visibility); element ID B1 is 0x3B (0x3B that is 59
in Decimal is lab_custScr1_3 label); visibility state B2 is 0x00 (set screen element
invisible).

• 0x C5 01 3B FF – message ID with ACK bit (this message is mandatory for tablet); update
type B0 is 0x01 (update label text); element ID B1 is 0x3B (0x3B that is 59 in Decimal is
lab_custScr1_3 label); string size B2 is 0xFF (set default text that is determined in
elements.yml configuration file for label).

Mandatory Field for downlinks

• header_id – 1 byte message ID. It is allowed to set the value of this field in Decimal
(should be set as usual number) and in Heximal (should be set with 0x or 0X prefix).

• port – LoRa port number.

Optional Field for downlinks

• handler_id – identifier of the handler that processes downlink payload. Possible values
are:

o updateElement_hdl – handler for Update element downlink.
o eodSleep_hdl – handler for End-of-day sleep downlink.

• screen_id – identifier of the screen that tablet should switch to after receiving
configured downlink. Possible values are:

o init_scr – initialization screen that consist of 6 labels, 1 panel and 1 image. This
screen is designed to view base Custom Display Tablet version information.

o custom1_scr, custom2_scr, custom3_scr, custom4_scr – screens that is designed
to have possibility to configure the custom screen. They consist of 10 labels, 6
buttons, 5 panels and 5 images on each screen.

NOTE: All custom screens do not have cross-screen connections between labels, panels
and images.

• ack_screen_id – identifier of the screen that tablet should switch to after receiving
acked configured downlink. This field is ignored if screen_id is present in downlink
configurations. This field is used as screen_id configuration if nack_screen_id and
screen_id fields are absent in downlink configurations. Possible values are the same as
for screen_id.

• nack_screen_id – identifier of the screen that tablet should switch to after receiving
nacked configured downlink. This field is ignored if screen_id is present in downlink
configurations. This field is used as screen_id configuration if ack_screen_id and
screen_id fields are absent in downlink configurations. Possible values are the same as
for screen_id.

Downlink configuration file example is:

Downlinks:

Get Main Screen response (0x58)

-

 header_id: 0x58

 port: 103

 screen_id: custom1_scr

Get Temperature response (0x53)

-

 header_id: 83

 port: 102

 handler_id: updateElement_hdl

 ack_screen_id: custom2_scr

 nack_screen_id: custom3_scr

Deep Sleep Management response (0x59)

-

 header_id: 89

 port: 104

 handler_id: eodSleep_hdl

This example file includes configurations for 3 downlinks (with message IDs 0x58, 83 (that is
0x53) and 89 (that is 0x59) that are set in header_id).

All these downlinks are headed with commentary started with # sign. These commentaries give
short brief about the downlink that is configured below and they are optional.

Get Main Screen response downlink (with header_id 0x58) is the first downlink in this
configuration file. It is configured to port 103. This mean that optional configurations (screen_id
in this case) is used only if tablet received downlink on port that is set in port field and with
message ID that is specified in field header_id (port 103 and header_id 0x58 in this case). There
is screen_id with custom1_scr as its value in configurations of this downlink. This mean that
tablet switches its view to first custom screen after receiving of this downlink.

Get Temperature response is configured as downlink with message ID 83 (or 0x53 in Heximal)
that is set in header_id field and is waiting on port 102 that is set in port field. The payload of
this downlink is processes as Update Element downlink that is set in handler_id by value
updateElement_hdl. The view of the tablet switches to the second custom screen after
receiving this acked downlink (that is set in field ack_screen_id by value custom2_scr) and to

the third custom screen after receiving this nacked downlink (that is set in field nack_screen_id
by value custom3_scr).

Deep Sleep Management response is configured as downlink with message ID 89 (or 0x59 in
Heximal) that is set in header_id field and is waiting on port 104 that is set in port field. The
payload of this downlink is processes as End-of-day sleep downlink that is set in handler_id by
value eodSleep_hdl. The view of the tablet does not switch to any screen because there no
screen_id, ack_screen_id or nack_screen_id in configurations for this downlink.

How to send button press to NS?

1. Add to uplinks.yml file new uplink with element as value of source field
2. Set for this uplink up id of button (from elements.yml file) as value of element_id field
3. Upload this file to the Tablet
4. Reboot Tablet
5. Wait till the Tablet connect to LoRa network
6. Switch the screen to one where the button was placed (with downlink)
7. Tap the button

Example:

You have a button on Custom Screen 1. It is defined in elements.yml file:

Some button

-

 id: btn_custScr1_1

 type: button

 style_id: bookNowBtn_stl

 label_style: whiteLab_stl

 font: chivo40.bin

 x: 5

 y: 588

 width: 1014

 height: 164

 text_id: cust2_txt

 visible: 1

You want Memo to send uplink 0x34 with payload 0x01 after tapping this button. To do that it
is necessary to add uplink to uplinks.yml and this button as source of this uplink:

Some button uplink (0x34)

-

 header_id: 0X34

 port: 10

 size: 2

 source: element

 element_id: btn_custScr1_1

 payload: 0x01

Mandatory Field for uplinks

• header_id – 1 byte message ID. It is allowed to set the value of this field in Decimal
(should be set as usual number) and in Heximal (should be set with 0x or 0X prefix). It is
not possible to set header_id equal to values that are message IDs for predefined
uplinks (from 0x00 to 0x13, from 0x24 to 0x27, from 0x40 to 0x42, 0x70 and 0x72):
tablet ignore uplink with such predefined message ID.

• port – LoRa port number. It is not possible to set port 20 (if port is set to 20 then uplink
with such configuration will be ignored by tablet).

• size – payload size (with message ID). If size is set to 0, tablet will increase it to 1
(message ID size) internally.

• source – “something” that cause sending the uplink. Possible values (any other value
will be ignored) for this field are:

o timer – uplink will be sent periodically. If source is set as timer, period is also
mandatory field.

o element – uplink will be sent after pressing certain screen button. If source is set
as element, element_id is also mandatory field.

o event – uplink will be sent after some event that can happen during tablet
runtime. If source is set as element, event_id is also mandatory field.

Optional Field for uplinks

• period – number of core ticks between two periodical uplinks. This field will be ignored
if source is not set as timer.

• element_id – identifier of the button that cause sending the uplink. All button
identifiers could be found in elements.yml file that configurate screen elements (any
other value will be ignored). This field will be ignored if source is not set as element.

• event_id – identifier of the event that cause sending the uplink. Possible values (any
other value will be ignored) for this field are:

o join_evt – uplink will send right after tablet join to LoRa network.
• retry – this field is show if uplink should be resent in case of absence of response

downlink to it (if retry value set equal to 1, uplink should be resent if there were no
response to it; if retry value set equal to 0 or this field is absent in uplink configurations,
uplink do not require response). If retry value is set equal to 1, repeat uplink will be sent
every 30 sec in case of absence of response downlink (dummy uplinks will also be
emitted by tablet every 10 sec in this case). This field will be ignored if response_dl field
value is set equal to 0 or if there are no response_dl in uplink configurations.

• response_dl – message ID of response downlink. The downlink with such message ID
(any downlink with such message ID) stops uplink retry cycle and marks uplink request
as responded. This field will be ignored if retry field value is set equal to 0 or if there are

no retry in uplink configurations. It is allowed to set the value of this field in Decimal
(should be set as usual number) and in Heximal (should be set with 0x or 0X prefix).

• payload – 1 byte payload value. It is allowed to set the value of this field only in Heximal
(should be set with 0x or 0X prefix). This field is proceeding only if size is value is not less
than 2. It is possible to use different payloads for uplinks with the same header.

NOTE: The number of configured uplinks in uplinks.yml file should not exceed 254.

Uplink configuration file example is:

Uplinks:

Get Main Screen request (0x58)

-

 header_id: 0x58

 port: 10

 size: 1

 source: event

 event_id: join_evt

 retry: 1

 response_dl: 0x58

Get Temperature request (0x53)

-

 header_id: 83

 port: 10

 size: 1

 source: timer

 period: 2

 retry: 1

 response_dl: 0x53

Switch Screen request (0x54)

-

 header_id: 0X54

 port: 10

 size: 2

 source: element

 element_id: btn_custScr2_3

 payload: 0x05

 retry: 1

 response_dl: 0x54

 This example file includes configurations for 3 uplinks (with message IDs 0x58, 83 (that is 0x53)
and 0x54 that are set in header_id).

All these uplinks are headed with commentary started with # sign (string after # is interpreted
as commentary in YAML). These commentaries give short brief about the uplink that is
configured below and they are optional.

All these uplinks are configured to be sent on port 10.

Get Main Screen request with header_id 0x58 and Get Temperature request with header_id 83
have size 1 that means that these requests are consist of 1 byte message ID only. Switch Screen
request with header_id 0X54 has size equal to 2 that means that this uplink consists of 1 byte
message ID and 1 byte payload. This payload is defined by payload (0x05 in this case).

All these uplinks configured to be resendable (retry field value is 1) till getting the response
(response downlink message ID is defined with response_dl).

Get Main Screen request has event as its source. That means that Get Main Screen request
uplink is emitted by tablet after special event in tablet. This event is defined in event_id field
(join_evt in this case that mean that this request is emitted by tablet after successful joining to
LoRa network).

Get Temperature request has timer as its source. That means that Get Temperature request
uplink is emitted periodical by tablet every 2 core ticks that is set in period.

Switch Screen request has element as source. That means that Switch Screen request uplink is
emitted by tablet after pressing the screen button that is set in element_id field
(btn_custScr2_3 in this case).

	MEMO Customization Guide

