
MEMO Customization Guide

Tablet allows to customize:

Graphical Interface

LoRaWAN Interface: Uplinks and Downlinks format

Customization is done via editing configuration files in YAML format.

(for detailed YAML format description here: YAML Ain’t Markup Language (YAML™) revision 1.2.2)

Configuration Files

elements.yml - defines graphical elements which are displayed on the screen

texts.yml - defines all static texts which are used in graphical interface

styles.yml - defines style attributes of graphical element, e.g shadows, text alignment, etc

uplinks.yml - defines format of all UL messages and events which trigger uplink

dlinks.yml - defines format of all DL messages and events which are triggered when DL is received

How to apply new configuration?

1. Change configuration files according to your preferences

2. Upload configuration files to the tablet via USB

3. Reboot tablet using Reset button

Tablet allows to compose any interface from graphical elements.

Next graphical elements are available:

Label - displays any text. E.g. “Room humidity is 65%“

Panel - rectangular filled with color

Image - display picture

Button - touch button

How to create Graphical Interface?

1. Create elements.yml

2. Specify all graphical elements in the file

3. Specify attributes and position of the each element

4. Upload this file to the Tablet

Introduction

Graphical Interface customization

https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/

5. Reboot Tablet

Example of elements.yml file

It includes configurations for 4 different graphical elements (label, image, panel, button)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Elements:

Product Name label

-

 id: lab_productName

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 0

 y: 135

 width: 1024

 visible: 1

 text_id: cust1_txt

Company logo black image

-

 id: img_logoBlack

 type: image

 x: 681

 y: 50

 image: LOGO_B.bin

 visible: 1

Bottom panel

-

 id: pnl_bottom

 type: panel

 style_id: btnPanel_stl

 x: 0

 y: 586

 width: 1024

 height: 179

 visible: 1

Some button

-

 id: btn_custScr1_1

 type: button

 style_id: bookNowBtn_stl

 label_style: whiteLab_stl

 font: chivo40.bin

 x: 5

 y: 588

 width: 1014

 height: 164

 text_id: cust2_txt

 visible: 1

Allowed Symbols in elements.yml :

IMPORTANT: Make sure you do not use not use symbols “#”, “!” and “@” which are special symbols in YAML (for example “#” is a symbol of

comment line in YAML). If it is really needed you may use

 “!” and “@” symbols (but not “#” symbol) for string values inside double quotes.

For example:

wrong usage:

label_style: cool_style_@1

right usage:

label_style: "cool_style_@1"

File Structure of elements.yml :

<screen element 1 configurations>, <screen element 2 configurations> and <screen element N configurations> – sets of configurations

for screen elements 1, 2 and N respectively.

document starts with “---”.

“Elements:” is on the next line.

The configurations of the screen elements are placed after “Elements:” line.

The configurations of every screen element start with “-” on separated line.

Concept of Screens:

Screen is a container for graphical elements.

It represents all the area of physical tablet screen, which can be used to display elements.

Initial Screen

Tablet always starts from the initial screen.

Initial screen is displayed until tablet receives LoRa downlink with command to switch to another screen. (pls see Custom Screens section).

1

2

3

4

5

6

7

8

9

10

Elements:

-

 <screen element 1 configurations>

-

 <screen element 2 configurations>

...

-

 <screen element N configurations>

Initial Screen displays tablet related data: firmware versions, logo, etc.

Graphical elements which are displayed on Initial Screen has next reserved ids:

lab_productName - product name

lab_fwVer - tablet firmware version

lab_tsFwVersion - touch screen controller virmware version

lab_bootloadVer - bootloader version

lab_apploadVer - application loader version

lab_iteFwVer - display controller firmware version

lab_loraStatus - statuses of connection to LoRa network (possible values: WAITING TO JOIN (before joining to the network) and JOINED

SUCCESSFULLY (after it))

img_logoBlack - Tektelic logo

pnl_bottom - panel with LoRa statuses

This elements can be altered or removed from Initial Screen if needed.

Custom Screens

Aside of Initial Screen it is possible to create up to 4 custom screens.

Switch to particular Custom Screen is done via LoRa downlink.

Each custom screen can contain:

up to 10 labels

up to 6 buttons

up to 5 panels

up to 5 images

NOTE:

elements.yml contains all graphical elements for all Customs Screens and Initial Screen.

Mandatory Fields for ALL graphical elements

id - is used to identify each graphical element.

id format MUST follow naming convention:

<type>_custScr<number of the screen>_<number of the element with this type on the screen>

type - first 3 symbols which contain graphical element type:

“lab” for labels

“img” for images

“pnl“ for panels

Description of Graphical Element Fields

“btn“ for buttons

number of the screen - number from 1 to 4

It is possible to have up to 4 Custom Screens (pls see Concept Of Screens section)

number of the element with this type on the screen - uniquely identifies each element on the Screen. Next values are allowed:

from 1 to 10 for labels

1 – 6 for buttons

1 – 5 for panels

1 – 5 for image

id examples:

“lab_custScr1_1” - label placed on 1st Custom Screen with identifier 1

“lab_custScr1_2” - label placed on 1st Custom Screen with identifier 2

“img_custScr3_4“ - image placed on 3rd Custom Screen with identifier 4

type - specify graphical element type.

Use:

“label” for labels

“image” for images

“panel“ for panels

“button“ for buttons

x - horizontal coordinate of the left bottom corner of the graphical element (coordinates start from the left top edge of the screen). The

value of this field is limited by the resolution of the screen (value should be in 0 – 1024 range).

y - vertical coordinate of the left bottom corner of the graphical element (coordinates start from the left top edge of the screen). The

value of this field is limited by the resolution of the screen (value should be in 0 – 768 range).

 visible – screen element visibility state. Possible values for this field are:

o 0 – screen element is invisible.

o 1 – screen element is visible.

Fields for the Label

font - name of the custom font to be used.

The length of the name of the file has to be not more than 8 symbols and the length of the file extension has to be not more than 3

symbols. Pls refer to ”How to create custom fonts? ” section for details. NOTE: Default font is font with height size equal to 20. It is

support Basic Latin, Latin-1

Supplement, Cyrillic, Arabic, Arabic Presentation Forms-A and Arabic Presentation Forms-B symbols.

 width – the width of the label in pixels. This field is optional. If this field is not set then width of the label will set automatically equal to

the width of content (text).

text_id – identifier of the static text string which is displayed on the graphical element.

All static text strings are specified in text.yml file. text_id should correspond to the particular id in that file.

style_id - defines style which is applied to the graphical element.

Style can specify colors, shadows, lines weight, etc.

All styles are configured in styles.yml file and style_id should correspond to the particular id in that file

calc_id – used to display system information.

If calc_id and text_id both are specified for the same label - calc_id field is ignored.

Possible values for calc_id field are following (other values will be ignored):

regStr_calc – firmware version with regional belongings string.

bootloadVer_calc – bootloader version

apploadVer_calc – application loader version

iteVer_calc – ITE firmware version

loraStatus_calc – the state of the connection to LoRa network

tsFwVer_calc – touch screen firmware version

Fields for the Panel

style_id - defines style which is applied to the graphical element.

Style can specify colors, shadows, lines weight, etc.

All styles are configured in styles.yml file and style_id should correspond to the particular id in that file.

width – the width of the panel in pixels

height – the height of the panel in pixels

Fields for the Image

image – name of the image file that is the source of image. The length of the name of the file has to be not more than 8 symbols and

the length of the file extension has to be not more than 3 symbols. This file has to be in binary format. (pls see How to prepare Images?

section)

NOTE: image dimensions are based on actual image size in pixels. Tablet cannot rescale images.

Fields for the Button

style_id - defines style which is applied to the button

Style can specify colors, shadows, lines weight, etc.

All styles are configured in styles.yml file and style_id should correspond to the particular id in that file

label_style – defines style which is applied to label which is placed on the button

All styles are configured in styles.yml file and label_style should correspond to the particular id in that file

font – the name of the font file that is the source of font for label viewed inside of the button.

The length of the name of the file has to be not more than 8 symbols and the length of the file extension has to be not more than 3

symbols. Pls refer to ”How to create custom fonts? ” section for details. NOTE: Default font is font with height size equal to 20. It is

support Basic Latin, Latin-1

Supplement, Cyrillic, Arabic, Arabic Presentation Forms-A and Arabic Presentation Forms-B symbols.

text_id – identifier of the static text string which is displayed on the button label .

All static text strings are specified in text.yml file. text_id should correspond to the particular id in that file.

width – the width of the button in pixels.

height – the height of the button in pixels.

1. Create texts.yml

2. Specify all static texts in the file (use only predefined ids for texts)

3. Link static text with graphic element you want to use this text using id

4. Upload texts.yml and elements.yml files to the Tablet

5. Reboot Tablet

texts.yml configuration file example:

NOTE: Up to 30 texts can be created.

Each text object contains 2 parameters:

How to add static texts?

1

2

3

4

5

6

7

8

9

10

11

Texts:

Some custom text

-

 id: cust1_txt

 value: "my text"

Another custom text

-

 id: cust2_txt

 value: "my another text"

id - unique string which identifies particular text object.

id format is following cust<number>_txt

number should be from 1 to 30

examples: cust1_txt, cust21_txt

id will be linked with text_id field in elements.yml file:

text_id of the particular element in elements.yml will be the same as id in texts.yml

So particular element will display that text string.

value - text itself. NOTE: brackets ““ must be used

Custom styles and fonts can be applied if needed.

E.g shadows, font attributes, etc.

How to create custom styles?

1. Create styles.yml

2. Specify all styles

3. Apply styles to the graphical elements which are specified in elements.yml

4. Upload to the Tablet styles.yml and elements.yml files

5. Reboot Tablet

styles.yml file example

Additional Customization of Graphical Interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Styles:

Dark grey label style

-

 id: dGreySpaceLab_stl

 text_color: dark_grey

 text_align: center

 letter_space: 1

Generic button style

-

 id: genericBtn_stl

 bg_color: white

 radius: 5

 pad_hor: 0

 pad_ver: 0

 pad_gap: 0

 border_color: dark_grey

 border_width: 10

 border_opa: opa_cover

 border_side: full

 shadow_color: dark_grey

 shadow_width: 5

This example file includes configurations for 2 styles (with names dGreySpaceLab_stl and genericBtn_stl that are set in id).

Mandatory Field for styles

id – unique identifier of the style. It should be literal name that may consist of Latin letters, “_” and digits (first symbol has to be a letter)

and its length should not exceed 20 symbols. It is desirable to add “_stl” at the end of the id of the style (do not forget to include these 4

symbols in id length limit).

Optional Fields for styles

text_color – a color of the text of label or label in button. Default value is white. Possible values of text_color field are (other value will

be ignored by Tablet):

white

light_grey

dark_grey

black

text_align – the alignment of the text in label. Text alignment is used by label only if the width of the label is more than the width of label

content text (see width property for Default value is auto. Possible values of text_align field are (other value will be ignored by Tablet):

auto – text align according to symbols that it contents (for example left alignment for Latin and right alignment for Arabic).

left

center

right

letter_space – the space in pixels between the nearest letters in the same word. The range of this field is 0 – 10 (0 means that this

option is disabled). Default value is 0 pixels.

bg_color – a color of the background of the screen element. Possible values of bg_color field are the same as for text_color. Default

value is white.

border_color – a color of the borders of the screen element. Possible values of border_color field are the same as for text_color.

Default value is black.

border_opa – the opacity of the borders of the screen element. Default value is opa_cover. Possible values of border_opa field are

(other value will be ignored by Tablet):

opa_transp – transparent border

opa_20 – 20% opacity

opa_40 – 40% opacity

opa_60 – 60% opacity

opa_80 – 80% opacity

opa_100 – 100% opacity

opa_cover – full opacity (the same as opa_100)

border_side – the side of the screen element where border should be placed. Default value is none. Possible values of border_side

field are (other value will be ignored by Tablet):

none

bottom

top

left

right

full

border_width – the width of the border in pixels. The range of this field is 0 – 50 (0 means that this option is disabled). Default value is

0.

shadow_color – a color of the shadows of the screen element. Possible values of shadow_color field are the same as for text_color.

Default value is white.

shadow_width – the width of the shadow in pixels. The range of this field is 0 – 50 (0 means that this option is disabled). Default value

is 0.

pad_hor – horizontal padding in pixels. The range of this field is 0 – 20 (0 means that this option is disabled). Default value is 0.

pad_ver – vertical padding in pixels. The range of this field is 0 – 20 (0 means that this option is disabled). Default value is 0.

pad_gap – gap padding in pixels. The range of this field is 0 – 20 (0 means that this option is disabled). Default value is 0.

radius – the radius of every corner in pixels. The range of this field is 0 – 20 (0 means that this option is disabled). Default value is 0.

NOTE: The number of configured styles in styles.yml file should not exceed 50.

How to create custom fonts?

1. Convert font from TTF/WOFF to bin with Font Converter

2. Link new font bin-file with elements you want to use this font in elements.yml

3. Upload new font bin-file and new elements.yml file to the Tablet

4. Reboot Tablet

Example

Fonts may be set up in elements.yml file:

This example configuration for Product Name label (with lab_productName as the value of id field) shows that this label will use chivo40.bin

font file (because the value of font field is equal to chivo40.bin). If chivo40.bin was not uploaded to the Tablet or the size of this file is more

then permitted (total size of uploaded to the Tablet images, fonts and touchscreen firmware files should not exceed 220 kB) than the Tablet

will use default font instead of chivo40.bin.

How to prepare Images?

1. Convert image from PNG/JPG/BMP to bin with Image Converter

2. Link new image bin-file with elements you want to use this image in elements.yml

3. Upload new image bin-file and new elements.yml file to the Tablet

1

2

3

4

5

6

7

8

9

10

11

Product Name label

-

 id: lab_productName

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 0

 y: 135

 width: 1024

 visible: 1

 text_id: meetingRoomDisplayTablet_txt

4. Reboot Tablet

Example

Images may be set up in elements.yml file:

This example configuration for TEK logo black image (with img_logoBlack as the value of id field) shows that this image will use

LOGO_B.bin file (because the value of image field is equal to LOGO_B.bin) as source of picture. If LOGO_B.bin was not uploaded to the

Tablet or the size of this file is more then permitted (total size of uploaded to the Tablet images, fonts and touchscreen firmware files should

not exceed 220 kB) than the Tablet will not show this picture.

Image Converter

Online image converter is a free tool that is accessible through the link: https://lvgl.io/tools/imageconverter

It is possible to create binary files from images (.png, .jpg and .bmp).

To convert a picture to binary format it is necessary to:

1. Choose an Image (png, jpg, or bmp) (see Figure 1).

2. Give a Name to the output file. E.g. "LOGO"

3. Specify the Color format. It is recommended to use “True color chroma keyed” format. Some format may convert your picture wrong.

4. Set the output format to Binary RGB332, Binary RGB565 or Binary RGB888. Do not use “C array”. It is recommended to use “RGB332”

format to decrease image file size.

5. Click the Convert button and to download the converted image.

Short explanations about image converter and about color formats can be find on the same page.

1

2

3

4

5

6

7

8

#TEK logo black image

-

 id: img_logoBlack

 type: image

 x: 650

 y: 20

 image: LOGO_B.bin

 visible: 1

Figure 1: Online Image Converter

https://lvgl.io/tools/imageconverter

Font Converter

Offline font converter is a free tool that is require node.js 10+ (node.js may be downloaded from Download | Node.js).

To install globally Font Converter (“lv_font_conv”) use your command prompt and these commands:

install release from npm registry

npm i lv_font_conv -g

install from github's repo, master branch

npm i lvgl/lv_font_conv -g

It is possible to use lv_font_conv command in command prompt after that.

The command with -h key shows help message and the meanings of the keys that is possible to use with lv_font_conv:

> lv_font_conv -h

usage: lv_font_conv.js [-h] [-v] --size PIXELS [-o <path>] --bpp {1,2,3,4,8} [--lcd | --lcd-v] [--use-color-

info]

 --format {dump,bin,lvgl} --font <path> [-r RANGE] [--symbols SYMBOLS] [--autohint-off]

 [--autohint-strong] [--force-fast-kern-format] [--no-compress] [--no-prefilter] [--no-

kerning]

 [--lv-include <path>] [--full-info]

optional arguments:

 -h, --help show this help message and exit

 -v, --version show program's version number and exit

 --size PIXELS Output font size, pixels.

 -o <path>, --output <path> Output path.

 --bpp {1,2,3,4,8} Bits per pixel, for antialiasing.

 --lcd Enable subpixel rendering (horizontal pixel layout).

 --lcd-v Enable subpixel rendering (vertical pixel layout).

 --use-color-info Try to use glyph color info from font to create grayscale icons. Since gray tones are

emulated via transparency, result will be good on contrast background only.

 --format {dump,bin,lvgl} Output format.

 --font <path> Source font path. Can be used multiple times to merge glyphs from different fonts.

 -r RANGE, --range RANGE

 Range of glyphs to copy. Can be used multiple times, belongs to previously declared

"--font".

 Examples:

 -r 0x1F450

 -r 0x20-0x7F

 -r 32-127

 -r 32-127,0x1F450

 -r '0x1F450=>0xF005'

 -r '0x1F450-0x1F470=>0xF005'

 --symbols SYMBOLS List of characters to copy, belongs to previously declared "--font". Examples:

 --symbols ,.0123456789

 --symbols abcdefghigklmnopqrstuvwxyz

 --autohint-off Disable autohinting for previously declared "--font"

 --autohint-strong Use more strong autohinting for previously declared "--font" (will break kerning)

https://nodejs.org/en/download/
https://nodejs.org/en/download/

 --force-fast-kern-format

 Always use kern classes instead of pairs (might be larger but faster).

 --no-compress Disable built-in RLE compression.

 --no-prefilter Disable bitmap lines filter (XOR), used to improve compression ratio.

 --no-kerning Drop kerning info to reduce size (not recommended).

 --lv-include <path> Set alternate "lvgl.h" path (for --format lvgl).

 --full-info Don't shorten "font_info.json" (include pixels data).

For example, if it is necessary to create binary bold_font_30.bin font file with Latin symbols from Chivo-Bold.ttf file and with Arabic symbols

from DejaVuSans-Bold.ttf file with font height equal to 30 pixels than you may use this command:

> lv_font_conv --no-compress --no-prefilter --bpp 1 --size 30 --font Chivo-Bold.ttf -r 0x20-0x7F --font

DejaVuSans-Bold.ttf -r 0x600-0x6FF -r 0xFB50-0xFDFF -r 0xFE70-0xFEFF --format bin -o bold_font_30.bin --

force-fast-kern-format

More examples and details about Offline Font Converter see at: GitHub - lvgl/lv_font_conv: Converts TTF/WOFF fonts to compact bitma

p format .

How to switch Screen with Downlink?

1. Add to dlinks.yml file new downlink with defined screen_id field

2. Add to uplinks.yml file new uplink (if it is not exist) which will be send on periodic basis to flush downlink queue delivery from Network

Server

3. Upload these files to the Tablet

4. Reboot Tablet

5. Send downlink that was added in step 1

Downlinks may be set up in dlinks.yml file:

And uplinks may be set up in uplinks.yml file:

It is necessary to send downlink 0x50 to port 110 to switch screen to Custom Screen 1 in this example. 0x33 periodical uplink will be used

here to flush downlink queue from Network Server.

LoRaWAN Interface customization

1

2

3

4

5

#Switch to Custom Screen 1 (0x50)

-

 header_id: 0x50

 port: 110

 screen_id: custom1_scr

1

2

3

4

5

6

7

Periodic Uplink to Manage Downlink Queue (0x33)

-

 header_id: 51

 port: 10

 size: 1

 source: timer

 period: 2

https://github.com/lvgl/lv_font_conv
https://github.com/lvgl/lv_font_conv
https://github.com/lvgl/lv_font_conv

How to send and display new data to tablet?

1. Add to dlinks.yml file new downlink with updateElement_hdl or updateSeveralElements_hdl handler

2. Add to uplinks.yml file with the uplink which will be send on periodic basis to trigger downlink delivery from Network Server

3. Upload these file to the Tablet

4. Reboot Tablet

5. Send downlink with new text

Note: New text in downlink should be in Unicode. Make sure that the label with new text was linked with font that includes all symbols to

show this text.

Downlinks may be set up in dlinks.yml file:

And uplinks may be set up in uplinks.yml file:

This example configuration for Update element downlink (with 0x45 as the value of header_id field) shows that this downlink payload will be

interpreted by the Tablet as command to update screen element (change text in label (for example the value of CO2 level) or visibility of

screen element).

This downlink will be handled as command to update element only if it is sent to port 102 (because 102 is the value of port field) and with

ACK bit equal to 1. ACK bit is the highest in header. In this example downlink should be with header 0xC5 (because 0x45 in hex is

0b01000101 in binary and it will be changed to 0xC5 which is 0b11000101 with 1 in highest bit) to be interpreted by the Tablet as command

to update screen element.

Example:

You have 3 labels on Custom Screen 1:

1. Label with static text “Temperature”.

2. Label with temperature value.

3. Label with static text “°C“.

These labels defined in elements.yml file:

1

2

3

4

5

Update element (0x45)

-

 header_id: 0x45

 port: 102

 handler_id: updateElement_hdl

1

2

3

4

5

6

7

Periodic Uplink to Manage Downlink Queue (0x33)

-

 header_id: 51

 port: 10

 size: 1

 source: timer

 period: 2

1

2

3

4

5

6

7

8

Temp label

-

 id: lab_custScr1_2

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 50

 y: 340

Static texts for them are defined in texts.yml file:

And you want to update temperature value to 47. To do that it is necessary to send such downlink on port 102 to Memo (it is necessary to

add aforementioned downlink to dlinks.yml and uplink to uplinks.yml):

0xC5 01 3B 02 34 37

The following the DL frame formats for update screen element message (0x45 downlink in our case).

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 visible: 1

 text_id: cust2_txt

Temp value label

-

 id: lab_custScr1_3

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 345

 y: 340

 visible: 1

 text_id: cust3_txt

Degree label

-

 id: lab_custScr1_4

 type: label

 style_id: blackLab_stl

 font: chivo40.bin

 x: 400

 y: 340

 visible: 1

 text_id: cust4_txt

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Temperature

-

 id: cust2_txt

 value: Temperature

Temperature value

-

 id: cust3_txt

 value: "24"

Celsius degree

-

 id: cust4_txt

 value: "°C"

Message ID bit 7 (A/N) of the message ID determines whether message is ack or nacked. Nacked message is ignored.

B0 is determine screen element update type. Possible values for B0 are: 1 – label text update, 2 - screen element visibility update (message

with any other value in B0 is ignoring by tablet).

B1 is determine screen element ID number (identifier of the element of the screen that necessary to update). Possible values for B1 are

corresponding with id field in elements.yml screen element configuration file: 0 is for lab_productName, 1 – lab_fwVer, 2 – lab_bootloadVer,

3 – lab_apploadVer, 4 – lab_iteFwVer, 5 – lab_tsFwVersion, 6 – lab_loraStatus, 7 – img_logoBlack, 8 – pnl_bottom, 57 – lab_custScr1_1,

58 – lab_custScr1_2, 59 – lab_custScr1_3, 60 – lab_custScr1_4, 61 – lab_custScr1_5, 62 – lab_custScr1_6, 63 – lab_custScr1_7, 64 –

lab_custScr1_8, 65 – lab_custScr1_9, 66 – lab_custScr1_10, 67 – but_custScr1_1, 68 – but_custScr1_2, 69 – but_custScr1_3, 70 –

but_custScr1_4, 71 – but_custScr1_5, 72 – but_custScr1_6, 73 – pnl_custScr1_1, 74 – pnl_custScr1_2, 75 – pnl_custScr1_3, 76 –

pnl_custScr1_4, 77 – pnl_custScr1_5, 78 – img_custScr1_1, 79 – img_custScr1_2, 80 – img_custScr1_3, 81 – img_custScr1_4, 82 –

img_custScr1_5, 83 – lab_custScr2_1, 84 – lab_custScr2_2, 85 – lab_custScr2_3, 86 – lab_custScr2_4, 87 – lab_custScr2_5, 88 –

lab_custScr2_6, 89 – lab_custScr2_7, 90 – lab_custScr2_8, 91 – lab_custScr2_9, 92 – lab_custScr2_10, 93 – but_custScr2_1, 94 –

but_custScr2_2, 95 – but_custScr2_3, 96 – but_custScr2_4, 97 – but_custScr2_5, 98 – but_custScr2_6, 99 – pnl_custScr2_1, 100 –

pnl_custScr2_2, 101 – pnl_custScr2_3, 102 – pnl_custScr2_4, 103 – pnl_custScr2_5, 104 – img_custScr2_1, 105 – img_custScr2_2, 106 –

img_custScr2_3, 107 – img_custScr2_4, 108 – img_custScr2_5, 109 – lab_custScr3_1, 110 – lab_custScr3_2, 111 – lab_custScr3_3, 112

– lab_custScr3_4, 113 – lab_custScr3_5, 114 – lab_custScr3_6, 115 – lab_custScr3_7, 116 – lab_custScr3_8, 117 – lab_custScr3_9, 118

– lab_custScr3_10, 119 – but_custScr3_1, 120 – but_custScr3_2, 121 – but_custScr3_3, 122 – but_custScr3_4, 123 – but_custScr3_5,

124 – but_custScr3_6, 125 – pnl_custScr3_1, 126 – pnl_custScr3_2, 127 – pnl_custScr3_3, 128 – pnl_custScr3_4, 129 – pnl_custScr3_5,

130 – img_custScr3_1, 131 – img_custScr3_2, 132 – img_custScr3_3, 133 – img_custScr3_4, 134 – img_custScr3_5, 135 –

lab_custScr4_1, 136 – lab_custScr4_2, 137 – lab_custScr4_3, 138 – lab_custScr4_4, 139 – lab_custScr4_5, 140 – lab_custScr4_6, 141 –

lab_custScr4_7, 142 – lab_custScr4_8, 143 – lab_custScr4_9, 144 – lab_custScr4_10, 145 – but_custScr4_1, 146 – but_custScr4_2, 147 –

but_custScr4_3, 148 – but_custScr4_4, 149 – but_custScr4_5, 150 – but_custScr4_6, 151 – pnl_custScr4_1, 152 – pnl_custScr4_2, 153 –

pnl_custScr4_3, 154 – pnl_custScr4_4, 155 – pnl_custScr4_5, 156 – img_custScr4_1, 157 – img_custScr4_2, 158 – img_custScr4_3, 159

– img_custScr4_4, 160 – img_custScr4_5 (update screen element message with any other value for B1 is ignoring by tablet).

Bytes starting from B2 are specific for different update types.

In update label text message (B0 is set to 1) Byte 2 (B2) is size of the new text string N bytes for the label (Figure 2). The size (B2) is

permitted to have values:

0x00 – label change its value with space symbol.

0x01 – 0x63 – size of the text string for label (maximum size is 99 bytes; if value is more then 99 (0x63 in Heximal) and not 0xFF tablet

ignore string after 99th byte).

0xFF – label text reset to default value that set in elements.yml configuration file.

Figure 2: The format of a DL update screen element with text update message block

Figure 3: The format of a DL update screen element with visibility update
message block.

Subsequent bytes in update label text message are new text string of N bytes for label (Fig. 2).

In update screen element visibility message (B0 is set to 2) Byte 2 (B2) is new visibility state (any other values are ignored by tablet):

0x00 – screen element switches to invisible state.

0x01 – screen element switches to visible state.

The following table describes the update screen element downlink acknowledgment.

Table: DL Frame Update screen element acknowledgement.

Example update screen element messages:

0x C5 01 3B 09 54 65 73 74 20 74 65 78 74 – message ID with ACK bit (this message is mandatory for tablet); update type B0 is 0x01

(update label text); element ID B1 is 0x3B (0x3B that is 59 in Decimal is lab_custScr1_3 label); string size B2 is 0x09 (0x09 is 9 in

Decimal that means that new text string is consist of 9 symbols); string B3 – B11 are ASCII codes for string “Test text”.

0x C5 02 3B 00 – message ID with ACK bit (this message is mandatory for tablet); update type B0 is 0x02 (update screen element

visibility); element ID B1 is 0x3B (0x3B that is 59 in Decimal is lab_custScr1_3 label); visibility state B2 is 0x00 (set screen element

invisible).

0x C5 01 3B FF – message ID with ACK bit (this message is mandatory for tablet); update type B0 is 0x01 (update label text); element

ID B1 is 0x3B (0x3B that is 59 in Decimal is lab_custScr1_3 label); string size B2 is 0xFF (set default text that is determined in

elements.yml configuration file for label).

0x C7 02 01 3B 09 54 65 73 74 20 74 65 78 74 02 3A 00 – message ID with ACK bit (this message is mandatory for tablet); number of

elements B0 is 2 (it is necessary to update 2 elements); update type of the first screen element B1 is 0x01 (update label text); element ID

B2 is 0x3B (0x3B that is 59 in Decimal is lab_custScr1_3 label); string size B3 is 0x09 (0x09 is 9 in Decimal that means that new text

string is consist of 9 symbols); string B4 – B12 are ASCII codes for string “Test text”; update type of the second screen element B13 is

0x02 (update screen element visibility); element ID B14 is 0x3A (0x3A that is 58 in Decimal is lab_custScr1_2 label); visibility state B15 is

0x00 (set screen element invisible).

Mandatory Field for downlinks

header_id – 1 byte message ID. It is allowed to set the value of this field in Decimal (should be set as usual number) and in Heximal

(should be set with 0x or 0X prefix).

port – LoRa port number.

Optional Field for downlinks

Update screen element

message (example

header_id is 0x45)

0xC5 103 ACK

0x45 1 NACK

Update several screen

elements message

(example header_id is

0x47)

0xC7 Depends on DR ACK

0x47 1 NACK

Information Type Example Message ID
Field Value

Maximum DL

Frame size

(Bytes)

Information

handler_id – identifier of the handler that processes downlink payload. Possible values are:

updateElement_hdl – handler for Update element downlink.

updateSeveralElements_hdl – handler for Update several elements downlink.

eodSleep_hdl – handler for End-of-day sleep downlink.

screen_id – identifier of the screen that tablet should switch to after receiving configured downlink. Possible values are:

init_scr – initialization screen that consist of 6 labels, 1 panel and 1 image. This screen is designed to view base Custom Display

Tablet version information.

custom1_scr, custom2_scr, custom3_scr, custom4_scr – screens that is designed to have possibility to configure the custom screen.

They consist of 10 labels, 6 buttons, 5 panels and 5 images on each screen.

NOTE: All custom screens do not have cross-screen connections between labels, panels and images.

ack_screen_id – identifier of the screen that tablet should switch to after receiving acked configured downlink. This field is ignored if

screen_id is present in downlink configurations. This field is used as screen_id configuration if nack_screen_id and screen_id fields

are absent in downlink configurations. Possible values are the same as for screen_id.

nack_screen_id – identifier of the screen that tablet should switch to after receiving nacked configured downlink. This field is ignored if

screen_id is present in downlink configurations. This field is used as screen_id configuration if ack_screen_id and screen_id fields

are absent in downlink configurations. Possible values are the same as for screen_id.

Downlink configuration file example is:

This example file includes configurations for 3 downlinks (with message IDs 0x58, 83 (that is 0x53) and 89 (that is 0x59) that are set in

header_id).

All these downlinks are headed with commentary started with # sign. These commentaries give short brief about the downlink that is

configured below and they are optional.

Get Main Screen response downlink (with header_id 0x58) is the first downlink in this configuration file. It is configured to port 103. This

mean that optional configurations (screen_id in this case) is used only if tablet received downlink on port that is set in port field and with

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Downlinks:

Get Main Screen response (0x58)

-

 header_id: 0x58

 port: 103

 screen_id: custom1_scr

Get Temperature response (0x53)

-

 header_id: 83

 port: 102

 handler_id: updateElement_hdl

 ack_screen_id: custom2_scr

 nack_screen_id: custom3_scr

Deep Sleep Management response (0x59)

-

 header_id: 89

 port: 104

 handler_id: eodSleep_hdl

message ID that is specified in field header_id (port 103 and header_id 0x58 in this case). There is screen_id with custom1_scr as its value

in configurations of this downlink. This mean that tablet switches its view to first custom screen after receiving of this downlink.

Get Temperature response is configured as downlink with message ID 83 (or 0x53 in Heximal) that is set in header_id field and is waiting on

port 102 that is set in port field. The payload of this downlink is processes as Update Element downlink that is set in handler_id by value

updateElement_hdl. The view of the tablet switches to the second custom screen after receiving this acked downlink (that is set in field

ack_screen_id by value custom2_scr) and to the third custom screen after receiving this nacked downlink (that is set in field nack_screen_id

by value custom3_scr).

Deep Sleep Management response is configured as downlink with message ID 89 (or 0x59 in Heximal) that is set in header_id field and is

waiting on port 104 that is set in port field. The payload of this downlink is processes as End-of-day sleep downlink that is set in handler_id

by value eodSleep_hdl. The view of the tablet does not switch to any screen because there no screen_id, ack_screen_id or nack_screen_id

in configurations for this downlink.

How to send button press to NS?

1. Add to uplinks.yml file new uplink with element as value of source field

2. Set for this uplink up id of button (from elements.yml file) as value of element_id field

3. Upload this file to the Tablet

4. Reboot Tablet

5. Wait till the Tablet connect to LoRa network

6. Switch the screen to one where the button was placed (with downlink)

7. Tap the button

Example:

You have a button on Custom Screen 1. It is defined in elements.yml file:

You want Memo to send uplink 0x34 without payload after tapping this button. To do that it is necessary to add uplink to uplinks.yml and this

button as source of this uplink:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Request cleaning button

-

 id: but_custScr1_1

 type: button

 style_id: genericBtn_stl

 label_style: whiteLab_stl

 font: chivo24.bin

 screen_id: custom2_scr

 x: 725

 y: 510

 width: 240

 height: 100

 text_id: cust8_txt

 visible: 1

1

2

3

4

5

6

7

Request cleaning button event (0x34)

-

 header_id: 0x34

 port: 10

 size: 1

 source: element

 element_id: but_custScr1_1

Mandatory Field for uplinks

header_id – 1 byte message ID. It is allowed to set the value of this field in Decimal (should be set as usual number) and in Heximal

(should be set with 0x or 0X prefix). It is not possible to set header_id equal to values that are message IDs for predefined uplinks (from

0x00 to 0x13, from 0x24 to 0x27, from 0x40 to 0x42, 0x70 and 0x72): tablet ignore uplink with such predefined message ID.

port – LoRa port number. It is not possible to set port 20 (if port is set to 20 then uplink with such configuration will be ignored by

tablet).

size – payload size (with message ID). If size is set to 0, tablet will increase it to 1 (message ID size) internally.

source – “something” that cause sending the uplink. Possible values (any other value will be ignored) for this field are:

timer – uplink will be sent periodically. If source is set as timer, period is also mandatory field.

element – uplink will be sent after pressing certain screen button. If source is set as element, element_id is also mandatory field.

event – uplink will be sent after some event that can happen during tablet runtime. If source is set as element, event_id is also

mandatory field.

Optional Field for uplinks

period – number of core ticks between two periodical uplinks. This field will be ignored if source is not set as timer.

element_id – identifier of the button that cause sending the uplink. All button identifiers could be found in elements.yml file that

configurate screen elements (any other value will be ignored). This field will be ignored if source is not set as element.

event_id – identifier of the event that cause sending the uplink. Possible values (any other value will be ignored) for this field are:

join_evt – uplink will send right after tablet join to LoRa network.

retry – this field is show if uplink should be resent in case of absence of response downlink to it (if retry value set equal to 1, uplink

should be resent infinite number of times if there were no response to it; if retry value is more then 1 and less then 255, uplink should be

resent defined number of times if there were no response to it; if retry value set equal to 0 or this field is absent in uplink configurations,

uplink do not require response). If retry value is set to value that is more then 0, repeat uplink will be sent every 30 sec in case of

absence of response downlink (dummy uplinks will also be emitted by tablet every 10 sec in this case). This field will be ignored if

response_dl field value is set equal to 0 or if there are no response_dl in uplink configurations.

response_dl – message ID of response downlink. The downlink with such message ID (any downlink with such message ID) stops

uplink retry cycle and marks uplink request as responded. This field will be ignored if retry field value is set equal to 0 or if there are no

retry in uplink configurations. It is allowed to set the value of this field in Decimal (should be set as usual number) and in Heximal

(should be set with 0x or 0X prefix).

payload – 1 byte payload value. It is allowed to set the value of this field only in Heximal (should be set with 0x or 0X prefix). This field is

proceeding only if size is value is not less than 2. It is possible to use different payloads for uplinks with the same header.

NOTE: The number of configured uplinks in uplinks.yml file should not exceed 254.

Uplink configuration file example is:

8

9

 retry: 10

 response_dl: 0x50

1

2

3

4

5

Uplinks:

Get Main Screen request (0x58)

-

This example file includes configurations for 3 uplinks (with message IDs 0x58, 83 (that is 0x53) and 0x54 that are set in header_id).

All these uplinks are headed with commentary started with # sign (string after # is interpreted as commentary in YAML). These

commentaries give short brief about the uplink that is configured below and they are optional.

All these uplinks are configured to be sent on port 10.

Get Main Screen request with header_id 0x58 and Get Temperature request with header_id 83 have size 1 that means that these requests

are consist of 1 byte message ID only. Switch Screen request with header_id 0X54 has size equal to 2 that means that this uplink consists

of 1 byte message ID and 1 byte payload. This payload is defined by payload (0x05 in this case).

All these uplinks configured to be resendable (retry field value is 1) till getting the response (response downlink message ID is defined with

response_dl).

Get Main Screen request has event as its source. That means that Get Main Screen request uplink is emitted by tablet after special event in

tablet. This event is defined in event_id field (join_evt in this case that mean that this request is emitted by tablet after successful joining to

LoRa network).

Get Temperature request has timer as its source. That means that Get Temperature request uplink is emitted periodical by tablet every 2

core ticks that is set in period.

Switch Screen request has element as source. That means that Switch Screen request uplink is emitted by tablet after pressing the screen

button that is set in element_id field (btn_custScr2_3 in this case).

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 header_id: 0x58

 port: 10

 size: 1

 source: event

 event_id: join_evt

 retry: 1

 response_dl: 0x58

Get Temperature request (0x53)

-

 header_id: 83

 port: 10

 size: 1

 source: timer

 period: 2

 retry: 1

 response_dl: 0x53

Switch Screen request (0x54)

-

 header_id: 0X54

 port: 10

 size: 2

 source: element

 element_id: btn_custScr2_3

 payload: 0x05

 retry: 1

 response_dl: 0x54

